SNESC Language Reference

1I. Introduction

11. What is SNESC?

12. Differences with Standard C

13. Compiling Code with SNESC

14. Version Information

15. Website

2II. Language Elements

21. Function Declarations

22. Variable Declarations

23. Keywords

34. Identifiers

35. Numbers

36. Characters and String Literals

37. Statements

48. Comments

4III. Constant and Variable Types

41. Intrinsic Data Types

42. Global Variables

43. Static Variables

54. Constants

55. Pointers

56. Arrays

57. Resources

6IV. Pointers and Arrays

61. Pointer vs. Arrays

62. Array Elements

63. Vector Assignment

74. String Assignment

75. Dynamic Allocation

7V. Expressions and Conditions

71. Methodology

82. Variable Pushing

83. Math Operations

8a. Order of Operations

8b. Multiplication Algorithm

9c. Division Algorithm

94. Comparisons

95. Result Pulling

9VI. Statements

101. Assignment Statements

102. Control Statements

10a. If Statements

11b. Switch Statements

11c. While Loops

11d. Do While Loops

11e. For Loops

12f. Break Statements

12g. Return Statements

12h. Labels & Goto Statements

123. Function Calls

13VII. Functions and Procedures

131. Function Declarations

132. Parameters

133. Scope

144. Recursion

145. Intrinsic Functions

14VIII. Built-In Assembler

141. Mnemonics

152. Addressing Modes

15a. Implied

15b. Immediate

15c. Absolute

15d. Long

15e. Indirect

15f. Indexed

15g. Direct Page

16h. Relative

163. Variable References

164. Data Lists

16IX. Preprocessor Directives

171. Includes

172. Defines

17X. System Libraries

171. Graphics Functions

182. Mouse/Joystick Functions

183. Output Functions

194. Timer Functions

195. Memory Functions

19XI. Kernel Functions and Initialization

191. NMI Routine

19a. DMA Queue

19b. Palette Table

20c. Sprite Table

20d. Timers

20e. Joysticks

202. COP Routine

203. ROM Initialization

21XII. Acknowledgements

22Appendix A. Backus-Naur Form

25Appendix B. Sample Program

I. Introduction

This document is intended to give a detailed description of the SNESC compiler and its syntax definition. It covers many of the features supported by the SNESC compiler, however since this is the first version of this document, it is expected that not all topics or questions are covered. More updates to this document are expected as the compiler progresses.

1. What is SNESC?

SNESC is a cross-compiler based roughly on the ANSI C syntax. Its purpose is to generate machine code for the Super Nintendo/Famicom and 65c816 CPU architectures. SNESC is a DOS application, and therefore must be executed on computers with DOS support.

2. Differences with Standard C

While SNESC tries to mimic common C syntax, it does not adhere to all ANSI C standards. Most noticeably, SNESC does not support the full set of data types defined in C. For example, there is no support (yet?) for multi-dimensional arrays, structures, enumerated types, and floating point numbers. Also, SNESC performs limited type checking, and therefore does not allow the usage of type defines, unions, etc.

Another main difference is the way SNESC performs its math operations. During calculations, all numbers are casted to signed longs while they are being operated on. This helps prevent overflow or underflow but can lead to non-standard results. The order of operations is also slightly different. See Section 5.3 for details.

Finally, in SNESC, assignment statements do not return results. Therefore one cannot set a = b = c = 0. Also, condition statements only accept Boolean values. Unlike C where any non-zero result is true, SNESC requires a comparison operator. This is done as a safety measure to prevent logical errors such as the following:

if (a = 1) write("a is equal to 1");
(Listing 1.1)

3. Compiling Code with SNESC

SNESC runs at a DOS prompt and takes two command-line arguments. The first argument is the filename of the source code and the second argument is optionally the destination file. To compile the file source.txt to game.smc, for example, one would type:

snesc.exe source.txt game.smc
(Listing 1.2)

4. Version Information

Version 1.0 – Initial Release.

5. Website

For additional information and the most recent version of SNESC visit the official SNESC website at http://wakdhacks.lfx.org/compiler/. There you will find a schedule of planned updates as well as more sample source code.

II. Language Elements

All languages contain basic elements which construct the syntax of the language. These elements, when used in conjunction with each other, form the logical program unit. SNESC has eight basic elements which it uses to define its syntax. They are: functions, variables, keywords, identifiers, numbers, characters and strings, statements, and comments.

1. Function Declarations

All code must be contained within a function block. A function is a modular unit that performs a task and optionally returns a result. Each function definition must start with a variable return type, followed by the function name, and ending with a parameter list. The following is an example of a typical function definition:

int factorial(int n)
(Listing 2.1)

The function name is defined as an identifier and can be used within expressions. (See the rules for defining identifiers.) Each function is given its own variable stack space which is created and destroyed during the function’s lifetime.

2. Variable Declarations

Variables are one of the most important elements of a programming language. They give names to values and provide a method in which to work with those values. In order to use a variable, however, it must first be defined within the program. Since variables can take on many behaviors and sizes, they must first be given a type. The type of a variable determines the range of values the variable may take, as well as the valid operations that can be performed on it. The syntax for defining a variable is the type, followed by the variable name (identifier), and an optional initialization. The following example creates the integer variable size and initializes it to the value 5.

int size = 5;
(Listing 2.2)

Multiple definitions can exist on the same line as long as their base types are all the same. For example, the following declarations are valid:

char x, *y, st[6] = "Hello";
(Listing 2.3)

3. Keywords

Certain identifiers in SNESC are reserved for the programming language and therefore cannot be used as names for variables or functions. These keywords are case insensitive. The following is a list of words which are reserved for compiler use:

RESOURCE
STATIC
VOID
INT

LONG
CHAR
CONST
SIGNED

UNSIGNED
GOTO
CONTINUE
BREAK

FOR
WHILE
DO
IF

ELSE
SWITCH
CASE
DEFAULT

RETURN
SIZEOF
ASM
AS

TRUE
FALSE

4. Identifiers

Identifiers are names given to variables or functions. An identifier must start with a letter or underscore, but can then be followed with any alphanumeric letter, underscore, or dollar sign. The maximum size of an identifier is 255 bytes.

5. Numbers

Numbers can be represented in multiple ways, the most common radix being decimal. Decimal numbers have no special formatting and are represented with the standard base 10 digits and optionally a sign. For example, 10, 982, 0, -5, -87, 23 are all decimal numbers. An alternative to decimal numbers is hexadecimal numbers. These numbers start with a “0x” and are followed with the digits 0 to 9 and A to F. The following are hexadecimal numbers: 0x10, 0xA, 0x25, 0xFF, 0x98, and 0x123. Unlike decimal numbers, though, hexadecimal numbers are unsigned. Inherently, all numbers use two’s compliment, so to flip the sign of a hexadecimal number one would have to flip all the digits in the number and add 1. A final way to represent numbers is by using ASCII characters. Characters are limited to the range 0 to 255, and are represented by values on the ASCII character table. See the next section for more details on how to define a character.

6. Characters & String Literals

SNESC provides for two ways to represent text. A single letter or symbol is called a character and a collection of characters is called a string. In order to use a character, it must be surrounded by single quotes. For example, ‘a’, ‘D’, ‘$’, ‘ô’ are all proper characters. A string literal, on the other hand, is surrounded by double quotes. "Hello", "474367", "!$#^$&" are all examples of string literals. Both characters and string literals allow for special values which cannot normally be typed using a keyboard. These values are inputted by using a special code which is preceded by a backslash. The following is a table of special codes and their corresponding characters.

Table 2.1 – Escape Sequences

	Code
	Character
	ASCII value

	\n
	new line
	10

	\t
	tab
	9

	\r
	line break
	13

	\f
	form feed
	12

	\v
	vertical tab
	11

	\"
	double quote
	34

	\'
	single quote
	39

	\\
	backslash
	92

	\b
	backspace
	8

	\0
	null
	0

7. Statements

Statements are the smallest elements of a language that perform work. They are constructed out of keywords, identifiers, numbers, characters, and strings and end with a semicolon. There are three classifications of statements, distinguished by the type of action they perform. The first class is control statements, which change the flow of control within the program. The second class is assignment statements, which allow variables to take on values. And finally, the third class is functional statements, which perform modular tasks. See Section 6 for a detailed description of statements.

8. Comments

Currently only the line comment is supported in SNESC. To denote a comment, the comment is preceded by a double forward slash like this:

// This is a comment
(Listing 2.4)

Program code preceding the comment is parsed normally but the remainder of the is excluded. Comments can still exist on the same line as regular code without disrupting the code as long as they are placed after the code on the given line. Here is an example of a comment placed after some code:

int mousex = 0;
// Initialize the mouse x position
(Listing 2.5)

III. Constant and Variable Types

Variables can take on various forms when created inside of a program. Different factors, like where or how the variable is created, affect its behavior. For example, variables created inside of a function have a different behavior compared to those variables created globally. Also, some variable types, like pointers, have limited use and cannot be used in multiplication or division operations. Below is a description of the different constant and variable types and how they are supported by the compiler.

1. Intrinsic Data Types

SNESC supports four basic data types of differing sizes. In increasing order they are: void, char, int, and long. A variable of type void cannot take on a value and is represented by zero bytes in memory. Only functions are allowed to be of void type, meaning that they do not return a value. Unlike C, void is not used to represent untyped variables. Variables of type char are one byte in length and represent the smallest unit in memory. Signed chars take on values between -128 and 127 and unsigned chars range between 0 and 255. Next in size are variables of type int. Ints are two bytes in length and can range from -32768 to 32767 (signed) or 0 to 65535 (unsigned). Due to the 16-bit architecture of the 65816 CPU, ints are the most optimized data type for the system. The last intrinsic data type is the long. Variables of type long are four bytes in length and are always signed. They range from -2147483648 to 2147483647 and, because the 65816 architecture does not support 32-bit numbers, are emulated. For this reason, variables of type long will take slightly longer to load than chars or ints.

2. Global Variables

Typically variables are created within a function and therefore exist only for the lifetime of the function. Globally defined variables, however, are declared outside of functions and therefore exist during the lifetime of the entire program. Since global variable locations take two bytes to store rather than one byte like function variables, global variables take both more space and time to access. Fortunately, the extra byte also allows more memory to be reserved for global variables.

3. Static Variables

Static variables behave exactly like global variables, except they are defined within a function. Since they exist within a function, they cannot be used outside of their function even though their values are preserved between calls. The keyword static is used to create static variables like in the following variable declaration:

static int mousex = 0;
(Listing 3.1)

4. Constants

Variables can also be defined as constant. Constant variables are not assigned memory locations but rather are understood as predefined numbers. They can be used just like any other variable, with the exception that they cannot be on the left side of an assignment. When the compiler encounters a variable defined as constant it substitutes the variable with the number assigned to the constant.

5. Pointers

A pointer is a special data type that does not represent variables but rather memory locations. A variable of type pointer refers to another variable and therefore must still be declared with an intrinsic data type. In order to declare a variable as type pointer, the type must be followed with a * in the variable declaration. The following code defines numlist as a pointer to a variable of type int:

int *numlist;
(Listing 3.2)

The Super Nintendo’s memory space can be represented with only three bytes, however to keep compatibility with other data types, pointers are four bytes in length (same size as a long). For the same reason that longs are emulated, mathematical operations on pointer types are also emulated.

6. Arrays

An array is a special type of pointer that is designed to be used as a list. While arrays point to memory locations just like pointers, they also have a size. This size determines how many elements exist in the array (not the number of bytes) and how much memory to allocate. To declare an array, the type of the array is first given, followed by the name of the array, and finally ending with the number of elements enclosed in braces. For example, an array declaration for an int array of size 12 would be:

int numlist[12];
(Listing 3.3)

7. Resources

Since the Super Nintendo maps ROM data to CPU addresses, accessing resource information is similar to using pointers. For this reason, SNESC allows resource files to be included in the code as variables. A variable assigned to a resource is given the type static const char*. That means that the variable is assigned a pointer location at compile time and preserves this value throughout the lifetime of the program. Resources can be defined individually or in groups as in the following examples:

resource "dog.map" as mapdata;

resource {

"background1.dat" as bg1;
(Listing 3.4)

"background2.dat" as bg2;

}

IV. Pointers and Arrays

If a single value is needed, a scalar variable is a very useful way of creating and managing the value. As more and more values become required, however, keeping track of each one with a variable becomes a cumbersome task. For example, it would be very difficult to create a variable for each element in a list, and then try to iterate through the list. The solution to this problem is the use of pointers and arrays. These two data types are specifically designed to iterate through sequences of values rather than a single value. This is done by storing the address of the list and then offsetting the address in order to access other items in the list.

1. Pointer vs. Arrays

While arrays are treated the same way as pointers, there is one major difference: When an array is declared, memory for it is reserved. Other than this difference, however, arrays and pointers can be used interchangeably. For example, to access the second element in an array using standard array notation one can do this:

A = array[2];
(Listing 4.1)

Alternatively, pointer notation can be used as in this example:

A = *(array + 2);
(Listing 4.2)

The two examples above are equivalent and in fact compile to congruent machine code. Since array elements can be larger than one byte, both the array offset and the pointer addition is multiplied by the element size before being added to the array address.

2. Array Elements

An array is a linear memory block reserved for storing consecutive elements of a single data type. If an array element is two bytes in length, then an array of length 12 will take 24 bytes of memory store. To access these array elements, array notation is used. Array notation is the array identifier followed by an expression enclosed in braces. For example, the following code is proper array notation:

A = array[x<<2+1];
(Listing 4.3)

The result of the expression determines which element in the array is accessed. Since no range checking is performed, the index in the array may point outside the bounds of the array and will result in undefined behavior.

3. Vector Assignment

A special feature of SNESC is that it allows multiple elements in an array to be assigned collectively by using vector assignments. This is similar to assigning each element individually, and like normal assignments allows expressions within the vector. There are two places in which this can be done. The first is initialization during variable declaration, as in the following example:

int elevation[8] = {1*3,5+1,-2,12,8-2,6,4,10};
(Listing 4.4)

The second is inside an assignment statement:

elevation = {1*3,5+1,-2,12,8-2,6,4,10};
(Listing 4.5)

Notice how in the first example the dimensions and a type are declared, but are excluded in the second. Vector assignment performs no range checking and therefore allows any number of elements to be assigned (including those outside of bounds).

4. String Assignment

Similar in function to vector assignment, string assignment also allows multiple elements in an array to be assigned at once. Unlike vector assignment, though, string assignment can only be used for character arrays. Since string literals contain no expressions, the string is copied directly to the array without calculation. This makes string assignment faster than vector assignment, however limited. Just like any string, strings used to assign character arrays can contain special codes. Also strings are null terminated, and therefore an extra char must be allocated for it in the array. The following are some examples of string assignment:

char weekdays[36] = "Sun\nMon\nTues\nWed\nThur\nFri\nSat";

weekdays = "Tuesday";
(Listing 4.6)

Notice how the dimension of weekdays is 36, not 35. This is to account for the null at the end of the string.

5. Dynamic Allocation

All arrays are allocated dynamically on an array stack and exist during the lifetime of the function they are contained in. Arrays can be given any dimension, including one determined by an expression (with the exception of global arrays), and therefore the following declaration is allowed:

char size = 5, name[size+1] = "Hello";
(Listing 4.7)

Since arrays are freed at the end of the function lifetime, there is no need for “garbage collection” and no need by the programmer to free the array. The drawback to this implementation, however, is that arrays cannot be re-dimensioned once they are created.

V. Expressions and Conditions

Expressions are any group of terms that are acted on by an operation or set of operations. The addition of two numbers, for example, is an expression. After the operation is performed, an expression will typically return the result of the operation. If the results of two expressions are compared with each other then a Boolean (true/false) result is obtained. These type of expression comparisons can be used to define conditions for when event occurs. It is easy to see then how expressions and conditions are powerful tools in which to program complex logic.

1. Methodology

Both expressions and conditions utilize a stack architecture to perform tasks and evaluations. All evaluation routines are centralized in the coprocessor (COP) interrupt. The interrupt has its own set of instructions for pushing values, operating on them, and then pulling the result. Some overhead is needed to enter and exit the COP interrupt and so it is most efficient when evaluating long chains of expressions (or groups of expressions). Since assignment statements utilize this stack, variable initializations often take advantage of this architecture.

2. Variable Pushing

The first step in evaluating a condition or expression is pushing the values and operations onto the stack. When placed onto the stack, all values are first casted to type long. This is to prevent overflow and underflow conditions and also to make evaluations easier to handle. When pushing variables, the variable address is first pushed onto the stack and then the operation. When pushing arrays, the array pointer is pushed onto the stack, followed by the offset (as an expression), and finally the operation. A special routine is used to push zero on the stack for arrays with no offset (as well as a few other operations).

3. Math Operations

Mathematical expressions or comparison of expressions are evaluated by the compiler and rearranged into post order notation. In this format, the first operation to be performed is always on the top of the stack, and the necessary operands are below it. For example, the expression (a + b) is pushed onto the stack in the order: a b +. The top of the stack contains the addition and the two operands, a and b, are loaded afterwards.

a. Order of Operations

To remove ambiguity when interpreting expressions, operations are performed in a specific order. The higher order operations (like the unary operations) are performed first, followed by lower order operations (like logical operations). The exact order of operations is given:

Table 5.1 – Operator Precedence

	Operation
	Description

	& (reference), (,)
	Reference, parentheses

	-, ~, * (dereference), typecasts, sizeof
	Unary operators

	<<, >>
	Binary shifts

	*, /, %
	Multiplication, division, modulus

	+, -
	Addition, subtraction

	&
	Binary AND

	^
	Binary XOR

	|
	Binary OR

	<, >, ==, <=, >=, !=
	Comparison operators

	!
	Logical negation

	AND
	Logical AND

	XOR
	Logical XOR

	OR
	Logical OR

b. Multiplication Algorithm

Built into SNESC is a fast multiplication routine based on partial products addition. In theory, any binary number can be decomposed into a polynomial of degree n-1, where n is the number of digits in the number. For example, 101101 is equivalent to 1x5 + 0x4 + 1x3 + 1x2 + 0x3 + 1x0, where x = 2 (the base). If we multiply this number by 1110, then we get the expression:

M = 1110 * (1x5 + 0x4 + 1x3 + 1x2 + 0x3 + 1x0) = 1110x5 + 1110x3 + 1110x2 + 1110x0
Since 2m can be performed using left shifts, we now see that the result can be obtained by shifting the multiplicand and conditionally adding it to the result. When the coefficient of the polynomial is 1 we add and when it is zero we do not. Since we are multiplying 32-bit numbers, the algorithm always performs 32 shifts. Due to the nature of the algorithm, the multiplication preserves the two’s compliment notation of the result. Therefore it works well for both signed and unsigned numbers.

c. Division Algorithm

The division algorithm is much slower than the multiplication algorithm. This is because numbers cannot be broken down for division like they can for multiplication. Instead, a standard long division algorithm is used. First, all numbers must be converted into positive values and their signs stored. Next, the divisor is shifted left until it is of equal degree as the dividend. At this point, the actual division can take place. The divisor is subtracted out from the dividend and if the result is positive a 1 is added to the quotient and the new dividend is stored, otherwise a 0 is added to the quotient and the dividend is not changed. The divisor is then shifted to the right and another subtraction takes place. This process is repeated until the divisor is shifted back to its original size. The quotient will then contain the result of the division and the dividend will contain the modulus. Below is an example calculation for 49 divided by 11. The correct result is 3 with a modulus of 9:

 0

1011 101010

 101100

 01

1011 101010

 10110

 10100

 011

1011 010100

 1011

 1001

Result = 011

Modulus = 1001

4. Comparisons

Comparisons are essential components of decision making. In fact, all conditional statements require the usage of at least one comparison operator in order to work properly. The comparison operators allowed by SNESC are <, >, ==, <=, >=, and !=. They are less than, greater than, equal, less than or equal, greater than or equal, and not equal respectively. The keywords true and false can be used in place of a comparison if none is required. Since boolean is not a supported variable type, comparisons cannot be assigned to variables and are the only expressions that return a Boolean result.

5. Result Pulling

The last step in evaluating a condition or expression is to pull the result off the stack. Most commonly this is performed during an assignment statement, however it will occur anytime an expression/condition is used. It is in this step that the result on the stack will be converted from long back to appropriate data type. If the value is being stored into a variable, then the variable address previously pushed onto the stack will be used for the destination. If the value is being stored to an array, the array pointer plus the offset (which is multiplied by the size of each element) is used as the destination.

VI. Statements

The majority of code making up a program consists of statements. Statements are elements that instruct the computer which tasks to perform and how to perform them. These tasks can include expression evaluations, value assignments, decision making, data manipulation, etc. Statements come in three basic forms: assignment statements, control statements, and function statements. Below is a description of each type.

1. Assignment Statements

Assignment statements are those statements which place values into memory. In the case of assigning a variable, the value is placed at the variable address. In the case of arrays, the value is placed at the effective address pointed to by the array. There are basically four types of assignment statements: standard, operational, increment/decrement, and array. A standard assignment statement assigns an expression to a variable or array, like in the following example:

a = a*(3*x+5);
(Listing 6.1)

An operational assignment statement performs an operation on the variable before storing it back. For example, the following example is identical to the example above:

a *= 3*x+5;
(Listing 6.2)

The variable a is multiplied by the right hand side of the assignment, 3x+5, and the result is stored back into a.

2. Control Statements

Control statements are the statements which change the execution flow of a program based on certain conditions. There are three types of control statements: selections, loops, and branches. If statements and switch statements are selection based statements and will conditionally execute code. While statements, do-while statements, and for statements all repeat blocks of code and are therefore classified as loops. Finally, breaks, returns, and gotos allow code execution to change locations and are therefore called branching statements.

a. If Statements

If statements allow blocks of code to be executed conditionally. If the condition within the if statement evaluates to true, then the code inside the if statement is executed, otherwise it is ignored. An if statement has two formats: the standard if block, and the if-else block. The standard if statement looks like these examples:

if (condition)

 statement;

if (condition) {

 statement1;

 statement2;
(Listing 6.3)

}

The if-else statement looks like this:

if (condition) {

 statement;

} else statement;

if (condition) {

 statement;

} else {
(Listing 6.4)

 statement1;

 statement2;

}

Notice how the braces are only required for blocks containing more than one statement, with the exception of the first block in the if-else statement. The required braces in the if-else block remove the ambiguity in the case of nested if-else statements.

b. Switch Statements

Switch statements in SNESC act similar to those in standard C. The switch expression is evaluated and then compared to each of the branch cases. If the branch case does not match the expression, then the branch is not taken. If there is a match, the branch is taken and execution continues until either a break or the end of the switch is encountered. If there are no matches at all, then the default branch is taken. A unique difference between this and C, however, is that the branch cases do not need to be constant expressions. SNESC is able to evaluate any type of expressions before doing the comparison. The following is an example of a valid switch statement:

switch (2*x+5) {

 case 2: x--; break;
(Listing 6.5)

 case 3: x++;

 default: x++;

}

In this example if 2*x+5 evaluates to 2, then x is decremented. If the expression evaluates to 3, then x is incremented twice. And if the expression evaluates to anything else, x is incremented only once. The braces are only required for code blocks with more than one statement.

c. While Loops

While loops allow a block of code to be repeatedly executed as long as the loop condition remains true. If the condition is initially false, then the entire block of code is ignored. Below is an example of a typical while loop:

while (a > b) {

 a++; b--;
(Listing 6.6)

}

The braces are only required if the while block contains more than one statement.

d. Do While Loops

The do-while loop also executes a block of code as long as a condition is satisfied, however it performs its check at the bottom of the loop. That means that regardless of the loop condition, the code is guaranteed to be executed at least once. A do-while loop has the following format:

do {

 a++; b--;
(Listing 6.7)

} while (a > b);

Notice how the statement ends with semicolon as compared to the while statement which does not. The braces are only required if the do-while block contains more than one statement.

e. For Loops

For loops are used to repeat the execution of a block of code for a certain number of iterations. A for loop has four basic parts: the initialization step, the loop condition, the iteration step, and finally the code. The initialization step is typically used to set up the loop counter; however it can be used to initialize any variable. The loop condition is the condition required to be satisfied for the loop to execute. When this condition evaluates to false, the code block stops executing. The iteration step is where the loop counter (or some other variable) is updated. The iteration step occurs after each iteration, before the condition is checked. Finally, following the for loop header is the code to be executed. If more than one statement is to be repeated then braces must surround the code. The following example initializes i and j to 0, and increments i until it is equal to 10:

for (i=0,j=i;i<10;i++) {

 statement1;
(Listing 6.8)

 statement2;

}

f. Break Statements

A break statement is used to break out of the innermost enclosing while, do, for, or switch statement. If a break statement is used outside of a statement then it will cause control to break out of the enclosing function, similar to a return statement.

g. Return Statements

A return statement is used to break out of the current enclosing function and optionally return a value. If no value is given in the return statement then the return will simply break out of the function. If a value is provided, then the function will terminate and return the value in the return statement. This can be used to pass values out of a function or to terminate a function upon the success or failure of a condition. Below is an example return statement that returns a value:

return a*2+1;
(Listing 6.9)

h. Labels and Goto Statements

A goto statement can be used to move program execution to a new location designated by a label. The syntax for a goto statement is the keyword goto, followed by a label name. A label is any identifier that is followed by a colon and a statement. A label without a following statement will give a syntax error. The following is a valid label/goto pair:

label1: i++;

if (i < 10) goto label1;
(Listing 6.10)

In the above example, i is incremented until it is equal to 10.

3. Function Calls

Function calls allow a programmer to execute functions within any block of code. A function call can be used either as a statement or as an expression. Function statements always start with the name of the function, followed by a parameter list enclosed in parentheses, and finally ended with a semicolon. If a function call returns a value, then it can be used in an expression like a variable. The format is the same as a function statement, except there is no semicolon at the end. The two examples below demonstrate the ways in which functions can be called:

writetext(x, y, &string, 4);
(Listing 6.11)

result = factorial(5)+1;

The first line is a function as a statement, and the second line is a function as an expression.

VII. Functions and Procedures

In structured programming large chains of statements are often repeated or heavily used for similar tasks. Since these statements are repeated a lot, it is very space inefficient to store every repetition as a different block of code. Instead, these statement blocks are often placed into separate module blocks of code and then “called” when needed. If a modular block of code is used to calculate and return a value, then it is called a function. If the code simply processes information, but returns no value, then it is called a subroutine or a procedure.

1. Function Declarations

Before a function can be called it must first be defined in the code. The way this is done is through a function declaration. A function declaration starts with the function header and ends with the statements contained within the function. If more than one statement exists within the function, the statements must be surrounded by braces. Optionally, local variable definitions can be included in the function before the statements. The structure of the function header is the return type, followed by the function name, followed by a list of variable definitions enclosed in parentheses. These variable definitions are separated by commas and are called the parameter list. A sample function looks like this:

void writetext(int x, int y, char* string, unsigned int color) {

 // code for writetext

 // ...
(Listing 7.1)

}

2. Parameters

Parameters are variables or data passed to a function so it can perform work. Typically, the parameter list will include the variables to be processed or the settings for the function. Even though the parameter list is declared with specific variable types, any type can be passed into a function as long as the levels of indirection are the same. In other words, pointers cannot be passed in as values and values cannot be passed in for pointers. The significance of the variable types then is how they are handled once they are pulled off the stack. For example, if a long is passed as a parameter of type int, then only the first two bytes would be passed to the function.

3. Scope

When a variable is defined within a function body, it has what is called local scope. What this means is that only the function containing the variable can see and use it. To all external functions the variable does not exist and therefore will not be found. If a variable is defined outside a function, however, then it can be used by all functions. This is what is called global scope. If there ever exists a global variable of the same name as a local variable, then the variable with the local scope is given precedence. Under this condition there would be no way to access the global variable without renaming the local variable.

4. Recursion

Whenever a function is called, the local variables within the function are pushed onto the variable stack. If a function is called within another function, the variables of the new function are stacked on top of the old ones. This allows for functions calls to be nested inside of other functions. If a function is nested inside itself, then it is called a recursive function. Recursion, and nesting in general, works properly as long as memory remains on the stack. If stack memory were to run out, a run time error would occur. A common recursive equation is the factorial equation, defined as f(n) = n*f(n-1). Below is a sample recursive function to compute factorials:

int factorial(int n) {

 if (n<1) return 1;

 return n*factorial(n-1);
(Listing 7.2)

}

5. Intrinsic Functions

SNESC supports one intrinsic function, the sizeof function. This function takes as a parameter either an expression or a data type surrounded by parentheses, and returns the byte length of the item. The sizeof function is not executed at run time but rather during compile time, and the result is substituted in for the function call.

VIII. Built-In Assembler

SNESC provides a built-in assembler with its own language syntax for programmers who wish to program lower level routines. The assembler supports the entire 65816 instruction set and also allows use of all variables in scope to be accessed from assembly code. This allows programmers to utilize the full features of SNESC to create and manage the variable stack without limiting their ability to use variables in assembly code. In order to use the built-in assembler, the keyword asm is used, followed by a set of assembler statements. If there is more than one assembler statement, they need to be enclosed in braces. An example asm statement looks like this:

asm {

 LDA #$0000;
(Listing 8.1)

 STA p;

}

The above code loads immediate the value zero, and stores it into the external variable p (which should minimally be 2 bytes in length).

1. Mnemonics

All assembler statements start with a three letter name called a mnemonic. Each mnemonic is a unique instruction and performs a special purpose. For example, LDA is used to load a value from memory and place it into the accumulator, while STA is used to take a value from the accumulator and store it to memory. In total there are 78 mnemonics defined for SNESC. Go to http://wakdhacks.lfx.org/docs/65816info.txt for a detailed description of the 65816 processor and the function of each mnemonic.

2. Addressing Modes

Each instruction can take advantage of multiple ways to access memory. These different access methods are called addressing modes. The types of addressing modes are: implied, immediate, absolute, long, indirect, indexed, direct page, and relative. Some instructions can use more than one addressing mode at once. For example, the instruction is LDA [dp],Y is direct page indirect long indexed.
a. Implied

Instructions with no operands have what are called implied addresses. Usually this means that the instruction only acts on a single register. For example, the instruction ASL implies that the accumulator is shifted to the left.

b. Immediate

Immediate addressing does not access memory but rather takes its value directly from the operand. To denote an immediate address a # is placed before the address. For example, LDA #$0000 loads the value zero into the accumulator.

c. Absolute

With absolute addressing the operand is the address of the data to be loaded. Since an absolute address is 16 bits long, the remainder of the 24-bit address is obtained from the data bank register. For example, LDA $1234 loads a value from address $[DB]:1234.

d. Long

Long addresses work just like absolute addresses except they are 24 bits in size. Since the entire memory space can be mapped to 24 bits, there is no extra register needed to resolve the address. An instruction utilizing a long address has the following format: LDA $123456.

e. Indirect

Indirect addresses do not access memory directly but rather work like pointers. The operand is actually the address of another address, the second which holds the data to be accessed. To denote an indirect address, the address is surrounded by parenthesis (for 16-bit addresses) or braces (for 24-bit addresses). The instruction LDA [$1234], for example, uses the absolute address $1234 to obtain the 24-bit address of the data to be loaded.

f. Indexed

To linearly access blocks of memory it is useful to offset a given memory address. Indexed addresses do exactly this by adding an offset value to the memory address and incrementing the offset. The two registers used for this task are called the index registers, X and Y. They are used as in the following example: LDA $1234,Y. This instruction adds the value in the Y register to the location $1234 to get the effective address $[DB]:1234+Y.

g. Direct Page

To reduce code size it is possible to store addresses as one byte addresses instead of the larger absolute or long addresses. This of course requires another register to resolve the full address. Addresses that are one byte in length are called direct page addresses because the upper 8 bits of their addresses are always zero (called the direct page). The rest of the address is obtained by adding the direct page address to the direct page register (DPR). The result is a 16-bit address located on page zero. For example, if the DPR is $1230, then the instruction LDA $04 would load a value from the address $00:1234.

h. Relative

There are various types of addresses which alone do not determine an address, but instead are dependent on the location of the instruction. For example, addresses relative to the program counter are used by several branching instructions and represent an offset from the current instruction. Notation for a relative branch is similar to that of a direct page address or absolute address. For example, BRA $03 and BRA $0003 are common branching instructions. Stack relative addresses are also location dependent, but represent an offset from the top of the stack. Notation for stack relative addresses are similar to indexed addresses and are represented like this: LDA $01,S.

3. Variable References

Variables declared outside of the assembler statement can still be accessed from assembly code. Since variable addresses are stored as direct page addresses, any assembly instruction that can use a direct page address can also use a variable reference. There is currently no support for array references like in the following example:

LDA a[2]
(Listing 8.2)

Instead, the above code would have to be converted into something like this:

LDY #$0002

LDA [a],Y
(Listing 8.3)

The above code uses the array pointer to access the data indirectly and offsets the address by two bytes in order to get the second element in the array, assuming each element is one byte long.

4. Data Lists

Data lists allow for raw data to be directly inserted into the machine code without any processing on the data. This is useful for assembly code that needs to access predefined values. For example, if a block of assembly code needed to access a list of colors, a data list could be used to store the colors. Since the data list directly inserts into the machine code, it is important not to use a data list where it will be accidentally executed as code. To avoid this, the data list should be used outside of the range of executable code. Any number of values can be placed within a data list, as long as they are separated with a space or tab. The following is an example of a data list of 13 bytes:

.data $00 $0001 $10AF $FF $12345678 $00 $00AA
(Listing 8.4)

IX. Preprocessor Directives

Preprocessor directives are commands given to the compiler before any compilation is done. These commands are typically used to alter the code or to tell the compiler to interpret the code differently. SNESC supports two different preprocessor directives. The first one is the include directive, used to insert another file into the code for compilation. The second is the define directive used to replace text or define constants. Preprocessor directives always start with a # sign followed by the keyword include or define.

1. Includes

The include directive can be placed anywhere within the source code and the compiler will compile the included file first before proceeding. Since there can be nested include files, SNESC allows for 50 nested include files to be compiled at once. If there is ever a recursively defined include file such that a cycle occurs, the duplicate file will automatically be skipped. To use the include directive, the filename can either be surrounded by quotes or by the < > symbols. Since there is currently no defined library directory, both will do the same thing. The following are some example include directives:

#include "graphics.h"

#include <mouse.txt>
(Listing 9.1)

2. Defines

Even though C supports numerous types of definition directives, SNESC currently only recognizes the basic define directive. The structure of a define is the keyword define, followed by some identifier, and ending with the value of the define. When the compiler encounters the identifier, it replaces it with the defined value. This is useful for creating constants or for doing temporary search and replaces. Below is an example of a basic define directive:

#define SCREENWIDTH 640
(Listing 9.2)

X. System Libraries

In order to perform low level tasks it is necessary to program special routines to access the Super Nintendo’s hardware registers. It is not expected that users of SNESC are intimately knowledgeable about the 65816 and SNES architecture. For this reason essential low level routines are pre-programmed and offered as system libraries. In general these libraries are used for five tasks: graphics, controller input, screen output, memory access, and timing. The following routines are the current set of system functions that can be included for program use:

1. Graphics Functions

void settiles(unsigned int b, unsigned char *p1, unsigned int size)

Assigns the picture data at p1, to the background designated by b. The size of the picture data in bytes needs to be specified by size.

void setmap(unsigned int b, unsigned char *p1)

Assigns the map data at p1, to the background designated by b.

void setpalette(unsigned char *pal)

Assigns the current palette to the color data pointed to by pal.

void enablescreen()

Turns on the screen.

void screenmode(unsigned int m)

Assigns the current screen mode to that specified by m.

void setsprite(unsigned int s, unsigned char x, unsigned char y, unsigned

char t, unsigned char p)

Assigns tile t to sprite s and moves it to the screen position designated by x and y. Parameter p represents the priority and flip settings.

2. Mouse/Joystick Functions

unsigned int getjoystatus(unsigned int j)

Returns the button status of joystick j as a bit packed integer. The following is a table of defined constants representing the bit designations:

	Constant
	Value

	TR_BUTTON
	0x0010

	TL_BUTTON
	0x0020

	Y_BUTTON
	0x0040

	X_BUTTON
	0x0080

	RIGHT_BUTTON
	0x0100

	LEFT_BUTTON
	0x0200

	Constant
	Value

	DOWN_BUTTON
	0x0400

	UP_BUTTON
	0x0800

	START_BUTTON
	0x1000

	SELECT_BUTTON
	0x2000

	B_BUTTON
	0x4000

	A_BUTTON
	0x8000

void clearjoy(unsigned int j)

Clears the joystick status of joystick j.

void getmousemove(unsigned int m, signed int *x, signed int *y)

Changes the variables x and y according to the movement of mouse m.
3. Output Functions

void addbcd(long *bcd, unsigned int n)

Adds a number in the range of 0 to 10 to the binary coded decimal number pointed to by bcd.

void writebcd(long bcd, unsigned int *map, unsigned int p, unsigned int offset)

Writes the binary coded decimal number bcd to the map data pointed to by map. p is the position in the map to write to and offset is the location of the tile data containing the digits.

void writestring(unsigned char *st, unsigned int *map, unsigned int p, unsigned int offset)

Writes the character string st to the map data pointed to by map. p is the position in the map to write to and offset is the location of the tile data containing the ASCII letters.
4. Timer Functions

void waitforvsync()

Waits until one frame has finished being drawn.

void delay(unsigned int d)

Waits for d frames to be drawn.

void resettimer()

Resets the first timer to zero.

void sync(unsigned int d)
Waits until at least d frames have been drawn since the last timer reset.

5. Memory Functions

void memcopy(unsigned char *dest, unsigned char *src, unsigned int size).

Copies size bytes of memory from the location in src to the location in dest.

XI. Kernel Functions and Initialization

Hidden from the programmer’s view are functions and initializations that are performed in order to create a working program. These functions are built directly into the template used to generate programs and are therefore available to all programs. In general, the goal of these functions is to separate the programmer from the low level tasks required to write a program. Specifically, these functions initialize the CPU and registers such that graphics or other tasks can be performed on the system. Certain data structures are also assigned to these tasks, and assist with the processing duties.

1. NMI Routine

The Super Nintendo’s NMI (Non-Maskable Interrupt) routine is the primary method in which graphics are drawn to the screen. Linked directly into the vertical refresh, the NMI is programmed to draw one frame to the screen before the vertical blank period ends. SNESC utilizes this interrupt routine to take care of all timing based functions. This includes all graphics, timers, and mouse/joystick routines.

a. DMA Queue

Before being drawn to the screen, all graphical changes are first stored in a queue where they wait for the NMI to be triggered. Once the NMI is entered, the NMI routine uses the queue to copy all the changes to video memory using DMA. Since all changes are accumulated to a temporary buffer first, the DMA transfer is kept as minimal (and therefore fast) as possible.

b. Palette Table

All changes to the palette are stored into a palette table containing the screen colors. Each palette entry is two bytes long with 256 colors. Therefore the entire table is 512 bytes in length.

c. Sprite Table

The Super Nintendo supports up to 128 sprites on the screen at one time. SNESC keeps track of updates to these sprites in a sprite table. Each entry in the table is 4 bytes long, holding the position, priority, color, and tile number of each sprite. The sprite table is a total of 544 bytes in length and can therefore hold up to 136 of these updates at once.

d. Timers

Up to 16 timers may be enabled at any time. During each cycle of the NMI routine, all enabled timers are incremented by one. The statuses of these timers are stored in a 16 bit number, where each bit represents the enabled status of the timer. Each timer is 16 bits in length and has a range of 0 to 65535.

e. Joysticks

Whenever the NMI routine is executed, the joystick ports are polled. The results of the poll are then accumulated into two memory addresses, one per port. This allows one to check whether or not a button has been pressed since the last check. If the joystick addresses are cleared during each frame, then the poll results do not accumulate and the joystick addresses tell whether a button is currently being pressed.

2. COP Routine

The coprocessor interrupt is used in SNESC to perform mathematical evaluations and functions dealing with the stack. In total there are 60 functions that the SNESC COP routine supports. These functions are defined in the init.smc template used to create the program core. The following is a list of all the functions implemented in the COP routine:
	pushnum
	pushsbyte
	pushsword
	pushlong
	pushnum
	pushbyte

	pushword
	pushlong
	ptradd1
	pullbyte
	pullword
	pulllong

	ptradd2
	pullbarray
	pullwarray
	pulllarray
	ptrsub1
	derefsbyte

	derefsword
	dereflong
	ptrsub2
	derefbyte
	derefword
	dereflong

	addlong
	sublong
	multlong
	divlong
	negate
	andlong

	orlong
	xorlong
	negative
	modulus
	shiftleft
	shiftright

	lessthan
	greaterthan
	equal
	lessequal
	greaterequal
	notequal

	andcond
	orcond
	xorcond
	notcond
	case
	reference

	duplicate
	addbstack
	addwstack
	addlstack
	setbarray
	setwarray

	setlarray
	refglobal
	pushzero
	setstring
	pushtrue
	pushfalse

Once the COP interrupt is entered, any of these functions can be performed in sequence without leaving the interrupt. Since entering and exiting the interrupt requires overhead to save the program state, the functions are designed such that many expressions can be built entirely from the COP functions. Each function is specially optimized so that overall the code generated from the compiler is optimized as well.

3. System Initialization

Many steps are taken to initialize the Super Nintendo registers to proper default values. These steps are all performed in the init.smc template and are executed upon program startup. In order to ensure proper program execution, the initialization routine must do the following tasks:

1) Switch to native 16-bit register mode

2) Clear the system variables and set the stack pointers

3) Turn the screen on, but leave it black

4) Reset the hardware registers to default values

5) Set the scroll registers to zero

6) Clear the sprite table

7) Enable joystick polling

8) Hook the NMI routine into the vertical retrace

9) Assign the data bank register

Once these steps are completed, the initialization routine then calls function main and normal execution proceeds.

XII. Acknowledgements

I would like to acknowledge the following people and their support. Without them I would have gone crazy doing this project: (
1) My brother Marlon for the idea and design help

2) My friend Mike for keeping me motivated

3) Gideon Zhi for answering all my strange questions and testing the compiler on his copier

4) Klarth for beta testing, proofreading, and numerous suggestions

5) Aziwoqpd for giving me webspace to put the project

6) The numerous other people who supported me but were not mentioned.

I would also like to recognize the following sites which helped me get the information I needed to build the compiler:

1) Syntax of the C Language - http://www.csci.csusb.edu/dick/samples/c.syntax.html
2) C Programming - http://www.strath.ac.uk/IT/Docs/Ccourse/
3) Qwertie’s SNES Documentation - http://qwertie.netfirms.com/snesemu/qsnesdoc.html
4) SNES Developer’s Lobby - http://filebox.vt.edu/users/rogrubb3/SNESDev/
5) Emulation Programmer’s Resource - http://www.classicgaming.com/epr/
Appendix A. Backus-Naur Form

program

 : def_list

def_list

 : func_decl

 | var_decl

 | func_decl def_list

 | var_decl def_list

opt_var_list

 :

 | var_list

var_list

 : var_decl

 | var_list var_decl

var_decl

 : var_type1 ident_list1 ';'

 | var_type2 ident_list2 ';'

 | res_block

res_block

 : _RESOURCE '{' res_list '}'

 | _RESOURCE res_item

res_list

 : res_item

 | res_item res_list

res_item

 : _STRING _AS _IDENT ';'

ident_list1

 : ident_item1

 | ident_list1 ',' ident_item1

ident_list2

 : ident_item2

 | ident_list2 ',' ident_item2

ident_item1

 : decl_ident add_ident

 | decl_ident add_ident '=' expr

 | decl_ident add_ident '=' '{' expr_list '}' push_ident

 | decl_ident add_ident '=' _STRING push_ident

expr_list

 : expr check_expr

 | expr_list ',' expr check_expr

check_expr

 :

ident_item2

 : decl_ident add_ident

 | decl_ident '=' number add_ident

decl_ident

 : _IDENT

 | _IDENT '[' expr ']'

 | '*' _IDENT

add_ident

 :

identifier

 : _IDENT find_ident

 | _IDENT find_ident push_ident '[' expr ']'

 | '*' _IDENT find_ident push_ident

find_ident

 :

number

 : _NUM

 | _HEXNUM

var_type1

 : type_init opt_type_list type

var_type2

 : type_init opt_type_list const opt_type_list type

opt_type_list

 :

 | type_list

type_list

 : static

 | sign

 | static type_list

 | sign type_list

type_init

 :

const

 : _CONST

static

 : _STATIC

sign

 : _SIGNED

 | _UNSIGNED

type

 : _CHAR

 | _INT

 | _LONG

func_decl

 : func_head

 func_body

func_head

 : var_type1 ret_ident '(' opt_fvar_list ')'

 | _VOID _IDENT '(' opt_fvar_list ')'

ret_ident

 : _IDENT

 | '*' _IDENT

opt_fvar_list

 :

 | _VOID

 | fvar_list

fvar_list

 : fvar_decl

 | fvar_list ',' fvar_decl

fvar_decl

 : var_type1 fdecl_ident

fdecl_ident

 : _IDENT

 | _IDENT '[' number ']'

 | '*' _IDENT

 | _IDENT '[' ']'

func_body

 : statement

 | '{' opt_var_list stat_list '}'

stat_body

 : statement

 | '{' stat_list '}'

stat_list

 : statement

 | stat_list statement

statement

 : func_stat ';'

 | assign_stat ';'

 | label_stat

 | select_stat

 | iterat_stat

 | jump_stat ';'

 | asm_stat

func_stat

 : _IDENT func_lookup '(' opt_param_list ')'

func_lookup

 :

opt_param_list

 :

 | param_list

param_list

 : expr check_param

 | param_list ',' expr check_param

check_param

 :

assign_stat

 : identifier '=' expr

 | identifier '=' '{' expr_list '}' push_ident

 | identifier '=' _STRING push_ident

 | identifier assign_op push_ident expr

 | identifier _PP

 | identifier _MM

push_ident

 :

assign_op

 : _ADD

 | _SUB

 | _MULT

 | _DIV

 | _OR_EQ

 | _AND_EQ

 | _XOR_EQ

 | _MOD

 | _SHL

 | _SHR

label_stat

 : lab ':' statement

 | _CASE fill_branch expr ':' check_cond statement

 | _DEFAULT ':' fill_branch statement

fill_branch

 :

select_stat

 : if_header stat_body

 | if_header '{' stat_list '}' _ELSE stat_body

 | _SWITCH '(' expr ')' stat_body fill_branch

if_header

 : _IF '(' condition ')' check_cond

check_cond

 :

iterat_stat

 : _WHILE '(' condition ')' check_cond stat_body

 | _DO stat_body _WHILE '(' condition ')' ';'

 | _FOR '(' opt_assign ';' opt_condition ';' opt_assign ')' stat_body

opt_assign

 :

 | assign_list

assign_list

 : assign_stat

 | assign_list ',' assign_stat

opt_condition

 :

 | condition

jump_stat

 : _GOTO lab

 | _CONTINUE

 | _BREAK

 | _RETURN expr

 | _RETURN

asm_stat

 : _ASM asm_body

asm_body

 : asm_inst

 | '{' asm_list '}'

asm_list

 : asm_inst

 | asm_list asm_inst

asm_inst

 : asm_code ';'

 | lab ':'

 | _DATA dataset ';'

dataset

 : asm_data

 | asm_data dataset

asm_data

 : asm_num

 | lab

 | _STRING

asm_ident

 : _IDENT find_ident

asm_code

 : op '#' immediate

 | op byte ',' byte

 | op byte _X

 | op asm_ident _X

 | op byte _Y

 | op asm_ident _Y

 | op byte _S

 | op byte

 | op asm_ident

 | op word _X

 | op word _Y

 | op word

 | op dword _X

 | op dword

 | op '[' byte ']' _Y

 | op '[' asm_ident ']' _Y

 | br '[' word ']'

 | op '[' byte ']'

 | op '[' asm_ident ']'

 | op '(' byte _S ')' _Y

 | br '(' word _X ')'

 | op '(' byte _X ')'

 | op '(' byte ')' _Y

 | op '(' asm_ident ')' _Y

 | br '(' word ')'

 | op '(' byte ')'

 | op '(' asm_ident ')'

 | br byte

 | br word

 | br dword

 | op 'A'

 | op

 | br lab

 | br '(' lab _X ')'

op

 : _OPCODE

br

 : _BRANCH

lab

 : _IDENT

asm_num

 : byte

 | word

 | dword

immediate

 : byte

 | word

byte

 : _BYTE

word

 : _WORD

dword

 : _DWORD

condition

 : condition _OR cond_set1

 | cond_set1

cond_set1

 : cond_set1 _XOR cond_set2

 | cond_set2

cond_set2

 : cond_set2 _AND cond_set3

 | cond_set3

cond_set3

 : '!' cond_set4

 | cond_set4

cond_set4

 : expr '<' expr

 | expr '>' expr

 | expr _EQ expr

 | expr _LE expr

 | expr _GE expr

 | expr _NE expr

 | '(' condition ')'

 | _TRUE

 | _FALSE

expr

 : expr '|' expr1

 | expr1

expr1

 : expr1 '^' expr2

 | expr2

expr2

 : expr2 '&' expr3

 | expr3

expr3

 : expr3 '+' expr4

 | expr3 '-' expr4

 | expr4

expr4

 : expr4 '*' expr5

 | expr4 '/' expr5

 | expr4 '%' expr5

 | expr5

expr5

 : expr5 _SL expr6

 | expr5 _SR expr6

 | expr6

expr6

 : '-' expr7

 | '~' expr7

 | '*' expr7

 | '(' var_type3 ')' expr7

 | _SIZEOF '(' var_type1 ')'

 | _SIZEOF '(' var_type2 ')'

 | _SIZEOF expr7

 | expr7

var_type3

 : var_type1

 | var_type1 '*'

expr7

 : '(' expr ')'

 | number

 | _ASCII

 | func_stat

 | _IDENT find_ident push_ident

 | '&' _IDENT find_ident

 | _IDENT find_ident push_ident '[' expr ']'

Appendix B. Sample Program
#include "graphics.txt"

#include "input.txt"

#include "string.txt"

resource {

 "tiles1.dat" as tiles1;

 "tiles2.dat" as tiles2;

 "bg1.map" as bg1map;

 "bg2.map" as bg2map;

 "palette.dat" as palette;

 "backpal.dat" as backpal;

}

void main() {

 char st[17]= "PLAYER 1\n\n READY", st2[10]="GAME OVER", st3[6]="PAUSE", st4[9]=" ";

 unsigned int i, j, a, b=0, c, obx, oby, bx=5, by=11, py=0, x=94, y=109;

 signed int dx=2, dy=1, px=80, xdir[4]={-2,-1,1,2}, ydir[4]={-1,-2,-2,-1};

 unsigned int blockcount=0, blockmap[0x400], backmap[0x400], pal[0x100];

 long score=0x00000000, hiscore=0x00005000, level2=0x00000001;

 unsigned int color=0, level=0, lives=4;

 unsigned char blocks[0x64], map[0x64] =

 {7,8,8,8,8,8,8,8,8,7,

 8,7,8,7,8,8,7,8,7,8,

 8,8,7,8,7,7,8,7,8,8,

 8,8,8,1,3,3,1,8,8,8,

 8,0,4,8,8,8,8,4,0,8,

 8,0,8,8,5,5,8,8,0,8,

 8,0,4,8,8,8,8,4,0,8,

 8,8,8,1,3,3,1,8,8,8,

 8,8,6,8,6,6,8,6,8,8,

 7,7,7,7,8,8,7,7,7,7};

 settiles(0, tiles1, 0xF00);

 settiles(1, tiles2, 0x250);

 memcopy(blockmap, bg1map, 0x800);

 memcopy(backmap, bg2map, 0x800);

 memcopy(blocks, map, 0x64);

 memcopy(pal, palette, 0x200);

 for (j=0;j<10;j++) {

 for (i=0;i<20;i++,i++) {

 a = blocks[b];

 if (a < 8) {

 c = j<<5+i; blockcount++;

 blockmap[0x62+c] = 13+a<<10;

 blockmap[0x63+c] = 14+a<<10;

 backmap[0x83+c] += 0x400;

 backmap[0x84+c] += 0x400;

 }

 b++;

 }

 }

 writebcd(lives, blockmap, 0x26C, 0x426);

 writestring(st, blockmap, 0x490, 0x3F6);

 setmap(0, blockmap);

 setmap(1, backmap);

 setpalette(pal);

 enablescreen();

 // main sprites

 setsprite(0, x, y, 20, 0x31);

 setsprite(1, px, 200, 15, 0x31);

 setsprite(2, px+8, 200, 16, 0x31);

 setsprite(3, px+16, 200, 16, 0x31+64);

 setsprite(4, px+24, 200, 17, 0x31);

 // shadow sprites

 setsprite(5, x+3, y+3, 21, 0x11);

 setsprite(6, px+4, 204, 18, 0x11);

 setsprite(7, px+12, 204, 19, 0x11);

 setsprite(8, px+20, 204, 19, 0x11+64);

 setsprite(9, px+28, 204, 18, 0x11+64);

 delay(50);

 while (getjoystatus(0) == 0) continue;

 writestring(st4, blockmap, 0x490, 0x3F6);

 writestring(st4, blockmap, 0x512, 0x3F6);

 setmap(0, blockmap);

label1:

 resettimer();

 if ((getjoystatus(0) & START_BUTTON) != 0) {

 writestring(st3, blockmap, 0x4D2, 0x3F6);

 setmap(0, blockmap);

 while (getjoystatus(0) != 0) { clearjoy(0); delay(5); }

 while ((getjoystatus(0) & START_BUTTON) == 0) continue;

 while (getjoystatus(0) != 0) { clearjoy(0); delay(5); }

 writestring(st4, blockmap, 0x4D2, 0x3F6);

 setmap(0, blockmap);

 }

 if ((getjoystatus(0) & A_BUTTON) != 0) {

 if ((getjoystatus(0) & RIGHT_BUTTON) != 0) px += 4;

 if ((getjoystatus(0) & LEFT_BUTTON) != 0) px -= 4;

 } else {

 if ((getjoystatus(0) & RIGHT_BUTTON) != 0) px += 2;

 if ((getjoystatus(0) & LEFT_BUTTON) != 0) px -= 2;

 }

// getmousemove(0, &px, &py);
// mouse port 1

 clearjoy(0);

 if (px < 16) px = 16;

 if (px > 144) px = 144;

 x += dx; y += dy;

 if (x > 171) {

 dx = -dx; x = 171;

 } else if (x < 16) {

 dx = -dx; x = 16;

 }

 if (y < 15) {

 dy = -dy;

 } else if (y > 195) {

 if (y < 203) {

 if ((x >= px) && (x <= px+27)) {

 a = (x-px)/7; dx = xdir[a]; dy = ydir[a];

 }

 } else if (y > 224) {

 // death

 if (lives == 0) {

 writestring(st2, blockmap, 0x4CE, 0x3F6);

 setmap(0, blockmap);

 lose: goto lose;

 }

 lives--; x=94; y=109; px=80;

 writebcd(lives, blockmap, 0x26C, 0x426);

 writestring(st, blockmap, 0x490, 0x3F6);

 setmap(0, blockmap);

 // main sprites

 setsprite(0, x, y, 20, 0x31);

 setsprite(1, px, 200, 15, 0x31);

 setsprite(2, px+8, 200, 16, 0x31);

 setsprite(3, px+16, 200, 16, 0x31+64);

 setsprite(4, px+24, 200, 17, 0x31);

 // shadow sprites

 setsprite(5, x+3, y+3, 21, 0x11);

 setsprite(6, px+4, 204, 18, 0x11);

 setsprite(7, px+12, 204, 19, 0x11);

 setsprite(8, px+20, 204, 19, 0x11+64);

 setsprite(9, px+28, 204, 18, 0x11+64);

 delay(50);

 while (getjoystatus(0) == 0) continue;

 writestring(st4, blockmap, 0x490, 0x3F6);

 writestring(st4, blockmap, 0x512, 0x3F6);

 setmap(0, blockmap);

 }

 }

 else if (y < 112) {

 obx = bx; oby = by;

 bx = (x-14)>>4; by = (y-14)>>3;

 b = bx+by<<3+by<<1-10;

 if ((b >= 0) && (b<100)) {

 if (blocks[b] <> 8) {

 blockcount--;

 for (i=0;i<=level;i++)

 addbcd(&score,blocks[b]+1);

 if (oby <> by) dy = -dy;

 if (obx <> bx) dx = -dx;

 blocks[b] = 8; b = by<<5+bx<<1;

 blockmap[0x42+b] = 0;

 blockmap[0x43+b] = 0;

 backmap[0x63+b] -= 0x400;

 backmap[0x64+b] -= 0x400;

 writebcd(score, blockmap, 0x1EA, 0x426);

 if (score > hiscore) {

 hiscore = score;

 writebcd(score, blockmap, 0x12A, 0x426);

 }

 setmap(0, blockmap);

 setmap(1, backmap);

 if (blockcount == 0) {

 // new level

 level++; addbcd(&level2, 1); x=94; y=109; px=80;

 writebcd(level2, blockmap, 0x5AC, 0x426);

 writestring(st, blockmap, 0x490, 0x3F6);

 memcopy(backmap, bg2map+0x800*(level&3), 0x800);

 memcopy(blocks, map, 0x64);

 if (color<6) { color++; } else color=0;

 memcopy(pal+16, backpal+color*16, 0x10);

 b=0;

 for (j=0;j<10;j++) {

 for (i=0;i<20;i++,i++) {

 a = blocks[b];

 if (a < 8) {

 c = j<<5+i; blockcount++;

 blockmap[0x62+c] = 13+a<<10;

 blockmap[0x63+c] = 14+a<<10;

 backmap[0x83+c] += 0x400;

 backmap[0x84+c] += 0x400;

 }

 b++;

 }

 }

 setpalette(pal);

 setmap(0, blockmap);

 setmap(1, backmap);

 // main sprites

 setsprite(0, x, y, 20, 0x31);

 setsprite(1, px, 200, 15, 0x31);

 setsprite(2, px+8, 200, 16, 0x31);

 setsprite(3, px+16, 200, 16, 0x31+64);

 setsprite(4, px+24, 200, 17, 0x31);

 // shadow sprites

 setsprite(5, x+3, y+3, 21, 0x11);

 setsprite(6, px+4, 204, 18, 0x11);

 setsprite(7, px+12, 204, 19, 0x11);

 setsprite(8, px+20, 204, 19, 0x11+64);

 setsprite(9, px+28, 204, 18, 0x11+64);

 delay(50);

 while (getjoystatus(0) == 0) continue;

 writestring(st4, blockmap, 0x490, 0x3F6);

 writestring(st4, blockmap, 0x512, 0x3F6);

 setmap(0, blockmap);

 }

 }

 }

 }

 // main sprites

 setsprite(0, x, y, 20, 0x31);

 setsprite(1, px, 200, 15, 0x31);

 setsprite(2, px+8, 200, 16, 0x31);

 setsprite(3, px+16, 200, 16, 0x31+64);

 setsprite(4, px+24, 200, 17, 0x31);

 // shadow sprites

 setsprite(5, x+3, y+3, 21, 0x11);

 setsprite(6, px+4, 204, 18, 0x11);

 setsprite(7, px+12, 204, 19, 0x11);

 setsprite(8, px+20, 204, 19, 0x11+64);

 setsprite(9, px+28, 204, 18, 0x11+64);

 sync(1);

 goto label1;

}

21

 PAGE+1 1

